3.4.17 \(\int \cos ^5(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx\) [317]

Optimal. Leaf size=159 \[ \frac {i a^{5/2} \tanh ^{-1}\left (\frac {\sqrt {a} \sec (c+d x)}{\sqrt {2} \sqrt {a+i a \tan (c+d x)}}\right )}{4 \sqrt {2} d}-\frac {i a^2 \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}-\frac {i a \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2}}{6 d}-\frac {i \cos ^5(c+d x) (a+i a \tan (c+d x))^{5/2}}{5 d} \]

[Out]

1/8*I*a^(5/2)*arctanh(1/2*sec(d*x+c)*a^(1/2)*2^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d*2^(1/2)-1/4*I*a^2*cos(d*x+c)*
(a+I*a*tan(d*x+c))^(1/2)/d-1/6*I*a*cos(d*x+c)^3*(a+I*a*tan(d*x+c))^(3/2)/d-1/5*I*cos(d*x+c)^5*(a+I*a*tan(d*x+c
))^(5/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.17, antiderivative size = 159, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {3571, 3570, 212} \begin {gather*} \frac {i a^{5/2} \tanh ^{-1}\left (\frac {\sqrt {a} \sec (c+d x)}{\sqrt {2} \sqrt {a+i a \tan (c+d x)}}\right )}{4 \sqrt {2} d}-\frac {i a^2 \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}-\frac {i \cos ^5(c+d x) (a+i a \tan (c+d x))^{5/2}}{5 d}-\frac {i a \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2}}{6 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^5*(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

((I/4)*a^(5/2)*ArcTanh[(Sqrt[a]*Sec[c + d*x])/(Sqrt[2]*Sqrt[a + I*a*Tan[c + d*x]])])/(Sqrt[2]*d) - ((I/4)*a^2*
Cos[c + d*x]*Sqrt[a + I*a*Tan[c + d*x]])/d - ((I/6)*a*Cos[c + d*x]^3*(a + I*a*Tan[c + d*x])^(3/2))/d - ((I/5)*
Cos[c + d*x]^5*(a + I*a*Tan[c + d*x])^(5/2))/d

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3570

Int[sec[(e_.) + (f_.)*(x_)]/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2*(a/(b*f)), Subst[
Int[1/(2 - a*x^2), x], x, Sec[e + f*x]/Sqrt[a + b*Tan[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 + b^
2, 0]

Rule 3571

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(d*
Sec[e + f*x])^m*((a + b*Tan[e + f*x])^n/(a*f*m)), x] + Dist[a/(2*d^2), Int[(d*Sec[e + f*x])^(m + 2)*(a + b*Tan
[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && EqQ[m/2 + n, 0] && GtQ[n, 0]

Rubi steps

\begin {align*} \int \cos ^5(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx &=-\frac {i \cos ^5(c+d x) (a+i a \tan (c+d x))^{5/2}}{5 d}+\frac {1}{2} a \int \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx\\ &=-\frac {i a \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2}}{6 d}-\frac {i \cos ^5(c+d x) (a+i a \tan (c+d x))^{5/2}}{5 d}+\frac {1}{4} a^2 \int \cos (c+d x) \sqrt {a+i a \tan (c+d x)} \, dx\\ &=-\frac {i a^2 \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}-\frac {i a \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2}}{6 d}-\frac {i \cos ^5(c+d x) (a+i a \tan (c+d x))^{5/2}}{5 d}+\frac {1}{8} a^3 \int \frac {\sec (c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx\\ &=-\frac {i a^2 \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}-\frac {i a \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2}}{6 d}-\frac {i \cos ^5(c+d x) (a+i a \tan (c+d x))^{5/2}}{5 d}+\frac {\left (i a^3\right ) \text {Subst}\left (\int \frac {1}{2-a x^2} \, dx,x,\frac {\sec (c+d x)}{\sqrt {a+i a \tan (c+d x)}}\right )}{4 d}\\ &=\frac {i a^{5/2} \tanh ^{-1}\left (\frac {\sqrt {a} \sec (c+d x)}{\sqrt {2} \sqrt {a+i a \tan (c+d x)}}\right )}{4 \sqrt {2} d}-\frac {i a^2 \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}-\frac {i a \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2}}{6 d}-\frac {i \cos ^5(c+d x) (a+i a \tan (c+d x))^{5/2}}{5 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.23, size = 118, normalized size = 0.74 \begin {gather*} -\frac {i a^2 e^{-i (c+d x)} \left (23+34 e^{2 i (c+d x)}+14 e^{4 i (c+d x)}+3 e^{6 i (c+d x)}-15 \sqrt {1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\sqrt {1+e^{2 i (c+d x)}}\right )\right ) \sqrt {a+i a \tan (c+d x)}}{120 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^5*(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

((-1/120*I)*a^2*(23 + 34*E^((2*I)*(c + d*x)) + 14*E^((4*I)*(c + d*x)) + 3*E^((6*I)*(c + d*x)) - 15*Sqrt[1 + E^
((2*I)*(c + d*x))]*ArcTanh[Sqrt[1 + E^((2*I)*(c + d*x))]])*Sqrt[a + I*a*Tan[c + d*x]])/(d*E^(I*(c + d*x)))

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 915 vs. \(2 (128 ) = 256\).
time = 0.84, size = 916, normalized size = 5.76

method result size
default \(\text {Expression too large to display}\) \(916\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^5*(a+I*a*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/1920/d*(15*I*sin(d*x+c)*cos(d*x+c)^4*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(9/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos
(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*2^(1/2)-768*I*cos(d*x+c)^9-15*cos(d*x+c)^4*(-2*cos(d*x+c)/(1+co
s(d*x+c)))^(9/2)*arctan(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2))*sin(d*x+c)*2^(1/2)+64*I*cos(d*x+c)^7
-60*cos(d*x+c)^3*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(9/2)*arctan(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2))
*sin(d*x+c)*2^(1/2)+60*I*sin(d*x+c)*cos(d*x+c)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(9/2)*arctanh(1/2*(-2*cos(d*x+c)
/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*2^(1/2)-90*cos(d*x+c)^2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(
9/2)*arctan(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2))*sin(d*x+c)*2^(1/2)-480*I*cos(d*x+c)^5-60*cos(d*x
+c)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(9/2)*arctan(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2))*sin(d*x+c)*2
^(1/2)-15*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(9/2)*2^(1/2)*arctan(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2)
)*sin(d*x+c)+90*I*sin(d*x+c)*cos(d*x+c)^2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(9/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+c
os(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*2^(1/2)-512*I*cos(d*x+c)^8-1536*cos(d*x+c)^9*sin(d*x+c)+160*I
*cos(d*x+c)^6+768*sin(d*x+c)*cos(d*x+c)^8+1536*I*cos(d*x+c)^10-256*sin(d*x+c)*cos(d*x+c)^7+60*I*sin(d*x+c)*cos
(d*x+c)^3*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(9/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos
(d*x+c)*2^(1/2))*2^(1/2)+320*sin(d*x+c)*cos(d*x+c)^6+15*I*2^(1/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(
1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(9/2)*sin(d*x+c)-480*sin(d*x+c)*cos(d*x+c)^
5)*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)/(I*sin(d*x+c)+cos(d*x+c)-1)/cos(d*x+c)^4*a^2

________________________________________________________________________________________

Maxima [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1076 vs. \(2 (120) = 240\).
time = 0.70, size = 1076, normalized size = 6.77 \begin {gather*} -\frac {20 \, {\left (i \, \sqrt {2} a^{2} \cos \left (\frac {3}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) - \sqrt {2} a^{2} \sin \left (\frac {3}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )\right )} {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {3}{4}} \sqrt {a} + 12 \, {\left (5 i \, \sqrt {2} a^{2} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) - 5 \, \sqrt {2} a^{2} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) + {\left (i \, \sqrt {2} a^{2} \cos \left (2 \, d x + 2 \, c\right )^{2} + i \, \sqrt {2} a^{2} \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 i \, \sqrt {2} a^{2} \cos \left (2 \, d x + 2 \, c\right ) + i \, \sqrt {2} a^{2}\right )} \cos \left (\frac {5}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) - {\left (\sqrt {2} a^{2} \cos \left (2 \, d x + 2 \, c\right )^{2} + \sqrt {2} a^{2} \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \sqrt {2} a^{2} \cos \left (2 \, d x + 2 \, c\right ) + \sqrt {2} a^{2}\right )} \sin \left (\frac {5}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )\right )} {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \sqrt {a} + 15 \, {\left (2 \, \sqrt {2} a^{2} \arctan \left ({\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ), {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) + 1\right ) - 2 \, \sqrt {2} a^{2} \arctan \left ({\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ), {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) - 1\right ) - i \, \sqrt {2} a^{2} \log \left (\sqrt {\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )^{2} + \sqrt {\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )^{2} + 2 \, {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) + 1\right ) + i \, \sqrt {2} a^{2} \log \left (\sqrt {\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )^{2} + \sqrt {\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )^{2} - 2 \, {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) + 1\right )\right )} \sqrt {a}}{480 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^5*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

-1/480*(20*(I*sqrt(2)*a^2*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - sqrt(2)*a^2*sin(3/2*arcta
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1
)^(3/4)*sqrt(a) + 12*(5*I*sqrt(2)*a^2*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 5*sqrt(2)*a^2
*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + (I*sqrt(2)*a^2*cos(2*d*x + 2*c)^2 + I*sqrt(2)*a^2*
sin(2*d*x + 2*c)^2 + 2*I*sqrt(2)*a^2*cos(2*d*x + 2*c) + I*sqrt(2)*a^2)*cos(5/2*arctan2(sin(2*d*x + 2*c), cos(2
*d*x + 2*c) + 1)) - (sqrt(2)*a^2*cos(2*d*x + 2*c)^2 + sqrt(2)*a^2*sin(2*d*x + 2*c)^2 + 2*sqrt(2)*a^2*cos(2*d*x
 + 2*c) + sqrt(2)*a^2)*sin(5/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*(cos(2*d*x + 2*c)^2 + sin(2*d
*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sqrt(a) + 15*(2*sqrt(2)*a^2*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*
x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*
x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x +
2*c) + 1)) + 1) - 2*sqrt(2)*a^2*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/
4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(
2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1) - I*sqrt(2)*a^2*log(sqrt
(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
 + 2*c) + 1))^2 + sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*sin(1/2*arctan2(sin(2
*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 + 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(
1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) + I*sqrt(2)*a^2*log(sqrt(cos(2*d*x + 2*c)^2
 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 + s
qrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*
d*x + 2*c) + 1))^2 - 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan
2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1))*sqrt(a))/d

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 244 vs. \(2 (120) = 240\).
time = 0.41, size = 244, normalized size = 1.53 \begin {gather*} \frac {15 \, \sqrt {\frac {1}{2}} \sqrt {-\frac {a^{5}}{d^{2}}} d \log \left (\frac {{\left (i \, a^{3} + \sqrt {2} \sqrt {\frac {1}{2}} \sqrt {-\frac {a^{5}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{2 \, d}\right ) - 15 \, \sqrt {\frac {1}{2}} \sqrt {-\frac {a^{5}}{d^{2}}} d \log \left (\frac {{\left (i \, a^{3} - \sqrt {2} \sqrt {\frac {1}{2}} \sqrt {-\frac {a^{5}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{2 \, d}\right ) + \sqrt {2} {\left (-3 i \, a^{2} e^{\left (6 i \, d x + 6 i \, c\right )} - 14 i \, a^{2} e^{\left (4 i \, d x + 4 i \, c\right )} - 34 i \, a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} - 23 i \, a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}}{120 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^5*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/120*(15*sqrt(1/2)*sqrt(-a^5/d^2)*d*log(1/2*(I*a^3 + sqrt(2)*sqrt(1/2)*sqrt(-a^5/d^2)*(d*e^(2*I*d*x + 2*I*c)
+ d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-I*d*x - I*c)/d) - 15*sqrt(1/2)*sqrt(-a^5/d^2)*d*log(1/2*(I*a^3 - s
qrt(2)*sqrt(1/2)*sqrt(-a^5/d^2)*(d*e^(2*I*d*x + 2*I*c) + d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-I*d*x - I*c
)/d) + sqrt(2)*(-3*I*a^2*e^(6*I*d*x + 6*I*c) - 14*I*a^2*e^(4*I*d*x + 4*I*c) - 34*I*a^2*e^(2*I*d*x + 2*I*c) - 2
3*I*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)))/d

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**5*(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^5*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((I*a*tan(d*x + c) + a)^(5/2)*cos(d*x + c)^5, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\cos \left (c+d\,x\right )}^5\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^5*(a + a*tan(c + d*x)*1i)^(5/2),x)

[Out]

int(cos(c + d*x)^5*(a + a*tan(c + d*x)*1i)^(5/2), x)

________________________________________________________________________________________